Бинарные отношения и их свойства. Специальные бинарные отношения Свойства отношений на множестве онлайн


Само понятие «отношение», конечно, вам знакомо. Мы часто его употребляем в речи. Например, мы можем сказать, что я в хороших отношениях со всеми студентами моей группы.

В жизни мы постоянно находимся в различных отношениях и вступаем в различные отношения. С членами своей семьи мы находимся в отношении родства, со школьными товарищами - в отношении дружбы, с руководителями учреждения, где мы учимся или работаем, - в отношении подчинения и т.д. В этом смысле отношение - это определенный характер связи .

В параграфе 2.2 мы говорили об отношениях, которые существуют между математическими объектами. Так, элемент по отношению к множеству находится в отношении принадлежности, два множества могут находиться в отношении включения или равенства.

Сейчас мы рассмотрим отношения, которые могут существовать между элементами множеств. Итак, мы сказали, что отношение, установленное между элементами множеств в рассмотренном примере, называется бинарными.

По существу в примере мы составили сначала декартово произведение заданных множеств, т.е. множество всех пар элементов этих множеств, так, что первый элемент пары принадлежит первому множеству, а второй - второму. Затем мы из множества этих пар выбрали подмножество тех пар, которые показывают, на каком же факультете учится каждый из студентов.

Определение 2.8. Бинарным отношением между множествами Ли В называется любое подмножество декартова произведения Ах В.

Бинарные отношения обычно обозначают буквами греческого алфавита: р («ро»), а («сигма»), |/ («пси») и др.

Если р - некоторое бинарное отношение между множествами А и В, то согласно определению бинарного отношения мы можем записать, что р с с Л х В.

Если пара (а, b ) принадлежит бинарному отношению р, т.е. (а, b ) е р, то говорят, что элемент а находится в отношении р с элементом b , и пишут арб. Так, в приведенном выше примере рассмотрено отношение «учиться на факультете». Тогда можно сказать, что Петр находится в данном отношении с факультетом математики.

Для некоторых отношений в математике существуют определенные знаки. Например,

В связи с тем что бинарное отношение - это множество пар, то, как любое множество, его можно задать либо перечислением этих пар, либо указанием характеристического свойства для выделения из декартова произведения пар, принадлежащих данному отношению.

Пример 2.6

Пусть заданы два числовых множества: А = {1, 3,5} и В = {2, 8, 10}. Зададим бинарное отношение о между этими множествами перечислением: а = {(1, 2), (5, 10)}. Это же отношение мы может задать и характеристическим свойством: бинарное отношение образуют пары чисел, такие что число из первого множества в два раза меньше числа из второго множества.

Пример 2.7

Рассмотрим множество студентов вашей академической группы. Установим в этом множестве отношение «быть другом». Для любой пары студентов академической группы можно сказать, находятся они в данном отношении или нет. Может даже случиться так, что это бинарное отношение будет образовывать пустое множество. В каком случае это будет?

В последнем примере нужно обратить внимание на то, что мы устанавливали отношение не между элементами двух множеств, а между элементами одного множества. Это также возможно и не противоречит определению бинарного отношения. Только в этом случае вместо декартова произведения двух множеств нужно рассмотреть декартов квадрат множества.

Бинарное отношение, заданное на множестве, может иметь разные свойства. Рассмотрим их.

1. Свойство рефлексивности.

Определение 2.9. рефлексивным , если для любого а е Л пара (а> а) е р.

Отношение «

2. Свойство симметричности.

Определение 2.10. Говорят, что бинарное отношение р, заданное на множестве Л, является симметричным , если для любых элементов а и b из Л из того, что пара (а , b ) находится в отношении р, следует, что пара (b , а) находится в отношении р.

Например, отношение равенства, заданное на множестве действительных чисел, симметрично, так как если число k равно числу п } то и число п равно числу k. Симметричным является и отношение «быть другом».

С другой стороны, отношение упорядоченности по величине (

3. Свойство антисимметричности.

Определение 2.11. Говорят, что бинарное отношение р, заданное на множестве Л, является антисимметричным у если для любых элементов а и b из Л из того, что пары (я, /;) и (/;, а) находятся в отношении р, следует, что а = Ь.

Например, отношение упорядоченности по величине на множестве действительных чисел антисимметрично. Ведь если известно, что для чисел х и у выполнено х и у то это означает, что х - у. А вот отношение параллельности прямых не является антисимметричным, так как если прямая / параллельна прямой t и прямая t параллельна прямой /, то это не означает, что прямые / и t совпадают. Они могут быть различны.

4. Свойство транзитивности.

Определение 2.12. Говорят, что бинарное отношение р, заданное на множестве Л, является транзитивным у если для любых элементов а , b и с из Л из того, что пары (я, b ) и (/?, с) находятся в отношении р, следует, что пара (а, с) также находится в отношении р.

Свойством транзитивности обладают отношения упорядоченности по величине, параллельности, отношение «быть родственником».

Отношение перпендикулярности прямых не является транзитивным (покажите это с помощью рисунка). Также по существу не является транзитивным и отношение «быть другом» (хотя и есть присказка, в которой выражено желание о транзитивности этого отношения: «Друг моего друга - мой друг»).

Мы рассмотрели только основные свойства бинарных отношений, которые определяют два широко используемых типа отношений.

Отношением эквивалентности (или эквивалентностью) называется бинарное отношение, которое обладает свойствами рефлексивности, симметричности и транзитивности.

Отношением упорядоченности (или упорядоченностью) называется бинарное отношение, которое обладает свойствами рефлексивности, антисимметричности и транзитивности.

Например, отношение «быть одноклассником» является эквивалентностью, так как оно обладает свойством рефлексивности, симметричности и транзитивности. Отношение «быть не выше ростом» на множестве людей является отношением упорядоченности.

Отношения эквивалентности и упорядоченности имеют очень важное значение в различных областях математики, а эквивалентность используется при выполнении классификаций различных объектов. Для того чтобы это понять, обратимся сначала к такому математическому понятию, как разбиение множества.

Определение 2.13. Разбиением множества/! называется представление этого множества в виде объединения непересекающихся подмножеств, которые называются классами разбиения.

Чтобы проверить, что мы имеем дело с разбиением множества, нужно проверить два условия:

  • объединение полученных при разбиении подмножеств является исходным множеством;
  • пересечение любых двух различных подмножеств является пустым множеством.

При выполнении классификации классами разбиения являются так называемые классы эквивалентности. Как же строятся эти классы?

Пусть на множестве А введено некоторое отношение эквивалентности р. Возьмем любой элемент а из А и все элементы из А, которые находятся с а в отношении р. Все эти элементы и будут образовывать класс эквивалентности элемента а. Понятно, что и сам элемент а попадет в этот класс. Действительно, если р - отношение эквивалентности, то оно обладает свойством рефлексивности, т.е. (а } а) е р, а это и означает, что сам элемент а входит в класс эквивалентности, который он образует.

Можно доказать, что классы эквивалентности различных элементов множества либо совпадают, либо не пересекаются. В связи с этим можно предположить, что эти классы могут рассматриваться в качестве классов разбиения.

Действительно, существует теорема, которая говорит о том, что если на множестве задано отношение эквивалентности, то множество всех классов эквивалентности, содержащих элементы этого множества, является разбиением этого множества.

С другой стороны, можно доказать, что если есть некоторое разбиение множества и на этом множестве задано бинарное отношение так, что пара элементов множества находится в этом отношении только при условии, что они оба принадлежат одному классу разбиения, то это бинарное отношение будет эквивалентностью.

Можно попробовать доказать каждое из этих утверждений самостоятельно или разобрать доказательство, которое приведено в работе .

При использовании классов эквивалентности мы разбиваем множество на подмножества, в каждое из которых входят своего рода «одинаковые» элементы. Например, множество всех положительных дробей можно разбить на классы эквивалентности таким образом: 1) взять каждую несокра-

тимую дробь (например, -); 2) в каждый класс эквивалентности соответ-

2 4 6 8 ч т

ствующеи дроби отнести все равные ей дроби - = - = - = 1аким

образом, мы разобьем все положительные дроби на соответствующие классы эквивалентности. Каждый такой класс является положительным рациональным числом.

  • В Большой советской энциклопедии говорится, что «отношение - эмоционально-волевая установка личности на что-либо, т.е. выражение ее позиции; мысленное сопоставление различных объектов или сторон данного объекта». В толковом словаре Д. Н. Ушакова«отношение - взаимное общение, связь между людьми, обществами, странами и т.п., образующаяся из общения на какой-нибудь почве».

Бинарным отношением Т(М) на множестве М называется подмножество М 2 = М х М, Т(М) с М 2 . Формальная запись бинарного отношения выглядит шкТ(М) = {(х, у) / (х, у) е Т с М х М}. Обратите внимание: далее мы будем рассматривать только не пустые множества Ми заданные на них непустые бинарные отношения Т(М)

Понятие «бинарное отношение» является более общим понятием, чем функция. Каждая функция представляет собой бинарное отношение, но не каждое бинарное отношение есть функция.

Например, множество пар Р = {(а, Ь), (а, с), (а, б)} является бинарным отношением на множестве {а, Ъ, с, (1), но функцией не является. И наоборот, функция Р= {(а, Ь),(Ь, с), (с1, а)} является бинарным отношением, заданным на множестве {а, Ь, с, с!}.

Мы уже сталкивались с понятием отношения при рассмотрении с (включение) и = (равенство) между множествами. Также неоднократно вами использовались отношения =, Ф, , заданные на множестве чисел - как натуральных, так и целых, рациональных, вещественных и т.д.

Определим несколько понятий относительно бинарного отношения, заданного на множестве М[ 2, 11].

Обратное отношение

Я-"= {(х, у) / (у, х) € Я). (1.14)

Дополнительное отношение

Л = {(*, У) / (х, у) й /?}. (1.15)

Тождественное отношение

и = {(х, х) / X Е М). (1.16)

Универсальное отношение

I ={(х,у)/хеМ,уеМ}. (1.17)

Рассмотрим несколько задач.

Задача 1.8

На множестве М= {а, Ь, с, с1 , е} задано бинарное отношение Т(М ) = = {{а, а ), (а , Ь ), (Ь , с), (с, ?/), (^/, б), {б, е)}. Построить отношения : обратное к Т , дополнительное к Т, тождественное бинарное отношение и и универсальное бинарное отношение /.

Решение.

Для решения этих задач нам нужны только определения.

По определению на множестве М= {а , Ь , с, б, е} обратное к ДЛ/) бинарное отношение должно содержать все обратные пары тождественное бинарное отношение Т~ = {(а , а ), (/?, я), (с, 6), (б, с), (^/, ?/), (с, б)}.

По определению на множестве М= {а, Ь, с , б, е} дополнительное к Т(М ) бинарное отношение должно содержать все пары из декартова произведения М 2 , которые не принадлежат Т(М), т.е. {(а , с), {а, Л), (а, е), (Ь, а), (Ь, Ь), (Ь, б), (Ь, е), (с, а), (с, Ь), (с, с), (с, е), {б, а), (б, Ь), (б, с), (е, а), (е, Ь), (е, с), (е, б), (е, е)}.

По определению на множестве М = {а, Ь, с, б , е} тождественное бинарное отношение и = {(а, а ), (Ь , /?), (с, с), (^/, ^/), (е, е)}.

По определению на множестве М = {а , 6, с, б, е} универсальное бинарное отношение содержит все пары из декартова произведения М 2 , т.е. / = {(а, а), (а , А), (о, с), (а,), (я, е), (Ь, а), (Ь, Ь), (Ь, с), (Ь, б), (Ь, е), (с, а), (с, Л), (с, с), (с, йО, (с, е), (б, а), (б , А), (, с), (,), (^,

Задача 1.9

На множестве М натуральных чисел от 1 до 5 построить бинарное отношение R = {(а , d) / mod(? r , Z>) = 0}, где mod - остаток от деления а на Ь.

Решение.

В соответствии с заданием на множестве натуральных чисел М строим такие пары (а , Ь), где а делится на b без остатка, т.е. mod(?, Ъ ) = = 0. Получаем R = {(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (2, 1), (3, 1), (4, 1), (5, 1), (4, 2)}.

Существует несколько основных способов задания бинарных отношений: перечисление, графическое представление, матричное представление.

Бинарные отношения R можно задать в виде перечисления, как любое множество пар.

При графическом представлении каждый элемент х и у множества М представляется вершиной, а пара (х, у) представляется дугой изх в у.

Матричным способом бинарные отношения задаются с помощью матрицы смежности. Такой способ наиболее удобен при решении задач с помощью компьютера.

Матрица смежности S представляет собой квадратную матрицу тх/й, где т - мощность множества М, и каждый ее элемент 5(х, у) равен единице, если пара (х, у) принадлежит Т(М), и равен нулю в противном случае.

На рис. 1.3 представлено графическое и матричное представление для Т(М) = {(а , а), (а, Ъ), (b , с), (с, d), (d , d), (d, e)}.

Определяя свойства бинарных отношений, обычно выделяют рефлексивность, симметричность и транзитивность.

Бинарное отношение Т(М) называется рефлексивным тогда и только тогда, когда для каждого элемента х е М пара (х, х) принадлежит этому бинарному отношению Т(М), т.е. Vx е М, 3(х, х) е Т(М).

Рис. 1.3. Графическое (а) и матричное (б) представление множества

Классическим определением этого свойства является следующее утверждение: из того, что элемент х принадлежит множеству М, следует, что пара (х, х) принадлежит бинарному отношению Т(М), заданному на этом множестве, т.е. /хєМ-) (х, х) є Т(М).

Прямо противоположное свойство бинарных отношений называется иррефлексивностью. Бинарное отношение Т(М) называется иррефлексивным тогда и только тогда, когда для каждого элемента х из множества М пара (х, х) не принадлежит этому бинарному отношению, т.е. /х є М -> (х, х) ё Т(М).

Если бинарное отношение Т(М) не обладает ни свойством рефлексивности, ни свойством иррефлексивности, то оно является нерефлексивным.

Например, для множества М - {а, Ь, с , ^/, е} бинарное отношение Т Х (М) = {(а , а), (а, Ь), (Ь, Ь), (Ь, с), (с, с), (с, сі), (сі, сі), (сі , с), (е, е )} является рефлексивным, Т 2 (М) = {(а , Ь), (Ь , с), (с, сі), (сі, с), (сі, е )} является иррефлексивным, а Т 3 (М) = {(а , а ), (а, Ь), (Ь , с), (с, сі), (сі , ?/), (?/, с)} является нерефлексивным.

Если во множестве М содержится хотя бы один элемент х, то правильная классификация не представляет сложности. Обратите внимание: для однозначности решения задачи классификации свойство рефлексивности следует определять только для непустых множеств!

В соответствии с этим бинарное отношение на пустом множестве является нерефлексивным, так же как нерефлексивным будет пустое бинарное отношение.

Бинарное отношение Т(М) называется симметричным тогда и только тогда, когда для каждой пары различных элементов (х, у), принадлежащей бинарному отношению Т(М), обратная пара (у, х) также принадлежит этому бинарному отношению, т.е. /(х, у) є Т(М), 3(у, х) є Т(М). Свойство симметричности мы определяем только для множеств, содержащих хотя бы два различных элемента, и непустых бинарных отношений.

Классическим определением свойства симметричности является следующее утверждение: из того, что пара (х, у) принадлежит Т(М), следует, что обратная пара (у, х) также принадлежит Т(М), т.е. /(х, у) є Т(М) -> (у, х) є Т(М). В этом случае еслих = у, то свойство симметричности плавно переходит в рефлексивность.

Прямо противоположное свойство бинарных отношений называется антисимметричностью. Бинарное отношение Т(М) называется антисимметричным тогда и только тогда, когда для каждой пары различных элементов х и у пара (у, х) не принадлежит этому бинарному отношению, т.е. /(х, у) є Т(М), (у, х) і Т(М).

Классическим определением антисимметричности можно считать следующее . Из того, что в антисимметричном бинарном отношении Т(М) для любой пары (х, у) обратная пара (у, х) также принадлежит Т(М), следует, что х = у, т.е. ((х, у) е Т(М), (у , х) е Т(М )) -> -> х = у.

Если бинарное отношение Т(М ) не обладает ни свойством симметричности, ни свойством антисимметричности, то оно является несимметричным.

В случае когда Мили Т(М) пусты или М содержит единственный элемент х, наше бинарное отношение одновременно является как симметричным, так и антисимметричным. Для однозначности решения задачи классификации множество М должно содержать хотя бы два различных элемента х и у. Тогда бинарные отношения на пустом множестве, так же как на множествах с одним элементом, являются несимметричными.

М - {а, Ь, с, ^/, е}. Бинарное отношение Г, = {(а , а), (а, Ь ), (Ь , а ), (с, с1), (с /, с), (е , с), (с, е)} является симметричным, Т 2 = {(а, а), (а, Ь), (с, с1), (е , с), (с, Ь ), (Ь , е )} является антисимметричным, Т 3 = {(а, а ), (а , Ь ), (6, я), (с, с1), (е , с), (с, я)} - несимметричным. Обратите внимание: петля (а , я) никак не влияет на симметричность и антисимметричность.

Свойство транзитивности определяется на трех различных элементах х, у и I множества М. Бинарное отношение Т(М) называется транзитивным тогда и только тогда, когда для каждых двух пар различных элементов (х, у) и (у, О, принадлежащих бинарному отношению Т(М), пара (х, ?) также принадлежит этому бинарному отношению, т.е. (/(х, у) е Т(М), /(у, I) е Т(М)), 3(х, I) е Т(М). Таким образом, между элементами х и ^ существует транзитивное замыкание («транзит»), которое «спрямляет» путь длины два (х, у) и (у, z)?

Классическое определение свойства транзитивности формулируется следующим образом: из того, что в транзитивном бинарном отношении Т(М) существует пара (х, у) и пара (у, I), следует, что пара (х, I) также принадлежит этому бинарному отношению, т.е. ((х, у) е Т(М ), (у, I) е Т(М)) -э (х, I) е Т(М ).

Бинарное отношение Т(М) называется интранзитивным тогда и только тогда, когда для каждых двух пар элементов (х, у) и (у, ?), принадлежащих бинарному отношению Т(М), пара (х, не принадлежит этому бинарному отношению, т.е. (/(х, у) е Т(М), /(у, I) е Т{М)), (х, I) ? Т(М). Таким образом, в интранзитивном бинарном отношении ни один имеющийся путь длины два не обладает транзитивным замыканием!

Классическое определение свойства интранзитивности формулируется следующим образом: из того, что в транзитивном бинарном отношении Т(М) существует пара (х, у) и пара (у, I), следует, что пара (х, I) не принадлежит этому бинарному отношению, т.е. ((*, у) е Т(М), (у, I) е Т(М)) -э (х, I) ? Т(М).

Если бинарное отношение Т(М) не обладает ни свойством транзитивности, ни свойством интранзитивности, то оно является нетранзитивным.

Например, рассмотрим множество М - {а , Ь, с, б, е}. Бинарное отношение Т х = {(а , а), (а , Ь ), (а , с), (Ь , с), (с, с), (е , с)} является транзитивным, Т 2 = {(я, я), (я, 6), (6, с), (с, 1), (?, 0} является интранзитив-ным, Т 3 = {(а , я), (я, 6), (6, с), (^/, с), (я, с), (е , ?/)} - нетранзитивным.

Задача 1.10

На множестве М х - {а, Ь, с, б, е} построить бинарное отношение Я с заданными свойствами : нерефлексивности , антисимметричности и нетранзитивности.

Решение.

Правильных решений этой задачи целое множество! Построим одно из них. В нашем бинарном отношении на некоторых вершинах, но не на всех, должны быть петли; не должно быть ни одной обратной дуги; должны быть хотя бы два пути длины 2, из них хотя бы один не иметь транзитивного замыкания. Таким образом, получаем Я = {(а, а), (Ь , Ь ), (а , Ь ), (Ь , с), (с, б), (б, е), (а, с), (с, е)}.

Задача 1.11

Определить свойства бинарного отношения Т, заданного на множестве М 2 = {а, Ь, с, б, е}, представленного ранее на рис. 1.3.

Решение.

В данном бинарном отношении на двух вершинах есть петли, на трех петель нет, следовательно, бинарное отношении нерефлексивно. Нет ни одной обратной дуги, следовательно, бинарное отношение антисимметрично. Бинарное отношение обладает несколькими путями длины два, но ни один из них не обладает транзитивным замыканием - Т интранзитивно.

Основы дискретной математики.

Понятие множества. Отношение между множествами.

Множество – совокупность объектов, обладающих определенным свойством, объединенных в единое целое.

Объекты, составляющие множество называются элементами множества. Для того чтобы некоторую совокупность объектов можно было называть множеством должны выполняться следующие условия:

· Должно существовать правило, по которому моно определить принадлежит ли элемент к данной совокупности.

· Должно существовать правило, по которому элементы можно отличить друг от друга.

Множества обозначаются заглавными буквами, а его элементы маленькими. Способы задания множеств:

· Перечисление элементов множества. - для конечных множеств.

· Указание характеристического свойства .

Пустым множеством – называется множество, не содержащее ни одного элемента (Ø).

Два множества называются равными, если они состоят из одних и тех же элементов. , A=B

Множество B называется подмножеством множества А ( , тогда и только тогда когда все элементы множества B принадлежат множеству A .

Например: , B =>

Свойство:

Примечание: обычно рассматривают подмножество одного и того е множества, которое называется универсальным (u). Универсальное множество содержит все элементы.

Операции над множествами.

A
B
1. Объединением 2-х множеств А и В называется такое множество, которому принадлежат элементы множества А или множества В (элементы хотя бы одного из множеств).

2.Пересечением 2-х множеств называется новое множество, состоящее из элементов, одновременно принадлежат и первому и второму множеству.

Н-р: , ,

Свойство: операции объединения и пересечения.

· Коммутативность.

· Ассоциативность. ;

· Дистрибутивный. ;

U
4.Дополнение . Если А – подмножество универсального множества U , то дополнением множества А до множества U (обозначается ) называется множество состоящее из тех элементов множества U , которые не принадлежат множеству А .

Бинарные отношения и их свойства.

Пусть А и В это множества производной природы, рассмотрим упорядоченную пару элементов (а, в) а ϵ А, в ϵ В можно рассматривать упорядоченные «энки».

(а 1 , а 2 , а 3 ,…а n) , где а 1 ϵ А 1 ; а 2 ϵ А 2 ; …; а n ϵ А n ;

Декартовым (прямым) произведением множеств А 1 , А 2 , …, А n , называется мн-во, которое состоит из упорядоченных n k вида .

Н-р: М = {1,2,3}

М× М= М 2 = {(1,1);(1,2);(1,3); (2,1);(2,2);(2,3); (3,1);(3,2);(3,3)}.

Подмножества декартова произведения называется отношением степени n или энарным отношением. Если n =2, то рассматривают бинарные отношения. При чем говорят, что а 1 , а 2 находятся в бинарном отношении R , когда а 1 R а 2.

Бинарным отношением на множестве M называется подмножество прямого произведения множества n самого на себя.

М× М= М 2 = {(a, b )| a, b ϵ M } в предыдущем примере отношение меньше на множестве М порождает следующее множество: {(1,2);(1,3); (2,3)}

Бинарные отношения обладают различными свойствами в том числе:

· Рефлексивность: .

· Антирефлексивность (иррефлексивность): .

· Симметричность: .

· Антисимметричность: .

· Транзитивность: .

· Асимметричность: .

Виды отношений.

· Отношение эквивалентности;

· Отношение порядка.

v Рефлексивное транзитивное отношение называется отношением квазипорядка.

v Рефлексивное симметричное транзитивное отношение называется отношением эквивалентности.

v Рефлексивное антисимметричное транзитивное отношение называется отношением (частичного) порядка.

v Антирефлексивное антисимметричное транзитивное отношение называется отношением строгого порядка.

Определение . Бинарным отношением R называется подмножество пар (a,b)∈R декартова произведения A×B, т. е. R⊆A×B . При этом множество A называют областью определения отношения R, множество B – областью значений.

Обозначение: aRb (т. е. a и b находятся в отношении R). /

Замечание : если A = B , то говорят, что R есть отношение на множестве A .

Способы задания бинарных отношений

1. Списком (перечислением пар), для которых это отношение выполняется.

2. Матрицей. Бинарному отношению R ∈ A × A , где A = (a 1 , a 2 ,..., a n), соответствует квадратная матрица порядка n , в которой элемент c ij , стоящий на пересечении i-й строки и j-го столбца, равен 1, если между a i и a j имеет место отношение R , или 0, если оно отсутствует:

Свойства отношений

Пусть R – отношение на множестве A, R ∈ A×A . Тогда отношение R:

    рефлексивно, если Ɐ a ∈ A: a R a (главная диагональ матрицы рефлексивного отношения содержит только единицы);

    антирефлексивно, если Ɐ a ∈ A: a R a (главная диагональ матрицы рефле сивного отношения содержит только нули);

    симметрично, если Ɐ a , b ∈ A: a R b ⇒ b R a (матрица такого отношения симметрична относительно главной диагонали, т.е. c ij c ji);

    антисимметрично, если Ɐ a, b ∈ A: a R b & b R a ⇒ a = b (в матрице такого отношения отсутствуют единицы, симметричные относительно главной диагонали);

    транзитивно, если Ɐ a, b, c ∈ A: a R b & b R c ⇒ a R c (в матрице такого отношения должно выполняться условие: если в i-й строке стоит единица, например в j-ой координате (столбце) строки, т. е. c ij = 1 , то всем единицам в j-ой строке (пусть этим единицам соответствуют k е координаты такие, что, c jk = 1) должны соответствовать единицы в i-й строке в тех же k-х координатах, т. е. c ik = 1 (и, может быть, ещё и в других координатах).

Задача 3.1. Определите свойства отношения R – «быть делителем», заданного на множестве натуральных чисел.

Решение.

отношение R = {(a,b):a делитель b}:

    рефлексивно, не антирефлексивно, так как любое число делит само себя без остатка: a/a = 1 для всех a∈N ;

    не симметрично, антисимметрично, например, 2 делитель 4, но 4 не является делителем 2;

    транзитивно,таккакесли b/a ∈ N и c/b ∈ N, то c/a = b/a ⋅ c/b ∈ N, например, если 6/3 = 2∈N и 18/6 = 3∈N, то 18/3 = 18/6⋅6/3 = 6∈N.

Задача 3.2. Определите свойства отношения R – «быть братом», заданного на множестве людей.
Решение.

Отношение R = {(a,b):a - брат b}:

    не рефлексивно, антирефлексивно из-за очевидного отсутствия aRa для всех a;

    не симметрично, так как в общем случае между братом a и сестрой b имеет место aRb , но не bRa ;

    не антисимметрично, так как если a и b –братья, то aRb и bRa, но a≠b;

    транзитивно, если называть братьями людей, имеющих общих родителей (отца и мать).

Задача 3.3. Определите свойства отношения R – «быть начальником», заданного на множестве элементов структуры

Решение.

Отношение R = {(a,b) : a - начальник b}:

  • не рефлексивно, антирефлексивно, если в конкретной интерпретации не имеет смысла;
  • не симметрично, антисимметрично, так как для всех a≠b не выполняется одновременно aRb и bRa;
  • транзитивно, так как если a начальник b и b начальник c , то a начальник c .

Определите свойства отношения R i , заданного на множестве M i матрицей, если:

  1. R 1 «иметь один и тот же остаток от деления на 5»; M 1 множество натуральных чисел.
  2. R 2 «быть равным»; M 2 множество натуральных чисел.
  3. R 3 «жить в одном городе»; M 3 множество людей.
  4. R 4 «быть знакомым»; M 4 множество людей.
  5. R 5 {(a,b):(a-b) - чётное; M 5 множество чисел {1,2,3,4,5,6,7,8,9}.
  6. R 6 {(a,b):(a+b) - чётное; M 6 множество чисел {1,2,3,4,5,6,7,8,9}.
  7. R 7 {(a,b):(a+1) - делитель (a+b)} ; M 7 - множество {1,2,3,4,5,6,7,8,9}.
  8. R 8 {(a,b):a - делитель (a+b),a≠1}; M 8 - множество натуральных чисел.
  9. R 9 «быть сестрой»; M 9 - множество людей.
  10. R 10 «быть дочерью»; M 10 - множество людей.

Операции над бинарными отношениями

Пусть R 1 , R 1 есть отношения, заданные на множестве A .

    объединение R 1 ∪ R 2: R 1 ∪ R 2 = {(a,b) : (a,b) ∈ R 1 или (a,b) ∈ R 2 } ;

    пересечение R 1 ∩ R 2: R 1 ∩ R 2 = {(a,b) : (a,b) ∈ R 1 и (a,b) ∈ R 2 } ;

    разность R 1 \ R 2: R 1 \ R 2 = {(a,b) : (a,b) ∈ R 1 и (a,b) ∉ R 2 } ;

    универсальное отношение U: = {(a;b)/a ∈ A & b ∈ A}. ;

    дополнение R 1 U \ R 1 , где U = A × A;

    тождественное отношение I: = {(a;a) / a ∈ A};

    обратное отношение R -11 : R -11 = {(a,b) : (b,a) ∈ R 1 };

    композиция R 1 º R 2: R 1 º R 2: = {(a,b) / a ∈ A&b ∈ B& ∃ c ∈ C: aR 1 c & c R 2 b}, где R 1 ⊂ A × C и R 2 ⊂ C × B;

Определение. Степенью отношения R на множестве A называется его композиция с самим собой.

Обозначение:

Определение . Если R ⊂ A × B , то R º R -1 называется ядром отношения R .

Теорема 3.1. Пусть R ⊂ A × A – отношение, заданное на множестве A .

  1. R рефлексивно тогда и только тогда, (далее используется знак ⇔) когда I ⊂ R.
  2. R симметрично ⇔ R = R -1 .
  3. R транзитивно ⇔ R º R ⊂ R
  4. R антисимметрично ⇔ R ⌒ R -1 ⊂ I .
  5. R антирефлексивно ⇔ R ⌒ I = ∅ .

Задача 3.4 . Пусть R - отношение между множествами {1,2,3} и {1,2,3,4}, заданное перечислением пар: R = {(1,1), (2,3), (2,4), (3,1), (3,4)}. Кроме того, S - отношение между множествами S = {(1,1), (1,2), (2,1), (3,1), (4,2)}. Вычислите R -1 , S -1 и S º R. Проверьте, что (S º R) -1 = R -1 , S -1 .

Решение.
R -1 = {(1,1), (1,3), (3,2), (4,2), (4,3)};
S -1 = {(1,1), (1,2), (1,3), (2,1), (2,4)};
S º R = {(1,1), (1,2), (2,1), (2,2), (3,1), (3,2)};
(S º R) -1 = {(1,1), (1,2), (1,3), (2,1), (2,2), (2,3)};
R -1 º S -1 = {(1,1), (1,2), (1,3), (2 ,1), (2,2), (2,3)} = (S º R) -1 .

Задача 3.5 . Пусть R отношение «...родитель...», а S отношение «...брат...» на множестве всех людей. Дайте краткое словесное описание отношениям:

R -1 , S -1 , R º S, S -1 º R -1 и R º R.

Решение.

R -1 - отношение«...ребёнок...»;

S -1 - отношение«...брат или сестра...»;

R º S - отношение «...родитель...»;

S -1 º R -1 - отношение «...ребёнок...»

R º R - отношение «...бабушка или дедушка...»

Задачи для самостоятельного решения

1) Пусть R - отношение «...отец...», а S - отношение «...сестра...» на множестве всех людей. Дайте словесное описание отношениям:

R -1 , S -1 , R º S, S -1 º R -1 , R º R.

2) Пусть R - отношение «...брат...», а S - отношение «...мать...» на множестве всех людей. Дайте словесное описание отношениям:

R -1 , S -1 , S º R, R -1 º S -1 , S º S.

3) Пусть R - отношение «...дед...», а S - отношение «...сын...» на множестве всех людей. Дайте словесное описание отношениям:

4) Пусть R - отношение «...дочь...», а S - отношение «...бабушка...» на множе- стве всех людей. Дайте словесное описание отношениям:

5) Пусть R - отношение «...племянница...», а S - отношение «...отец...» на множестве всех людей. Дайте словесное описание отношениям:

R -1 , S -1 , S º R, R -1 º S -1 , R º R.

6) Пусть R - отношение «сестра...», а S - отношение «мать...» на множестве всех людей. Дайте словесное описание отношениям:

R -1 , S -1 , R º S, S -1 º R -1 , S º S.

7) Пусть R - отношение «...мать...», а S - отношение «...сестра...» на множе- стве всех людей. Дайте словесное описание отношениям:

R -1 , S1, R º S, S1 º R1, S º S.

8) Пусть R - отношение «...сын...», а S - отношение «...дед...» на множестве всех людей. Дайте словесное описание отношениям:

R -1 , S -1 , S º R, R -1 º S -1 , R º R.

9) Пусть R - отношение «...сестра...», а S - отношение «...отец...» на множе- стве всех людей. Дайте словесное описание отношениям:

R -1 , S -1 , R º S, S -1 º R -1 , S º S.

10) Пусть R - отношение «...мать...», а S - отношение «...брат...» на множестве всех людей. Дайте словесное описание отношениям:

R -1 , S -1 , S º R, R -1 º S -1 , R º R.

Отношение, заданное на множестве, может обладать рядом свойств, а именно:

2. Рефлексивность

Определение. Отношение R намножестве Х называется рефлексивным, если каждый элемент х множества Х находится в отношении R с самим собой.

Используя символы, это отношение можно записать в таком виде:

R рефлексивно на Х Û("х Î Х ) х R х

Пример. Отношение равенства на множестве отрезков рефлексивно, т.к. каждый отрезок равен себе самому.

Граф рефлексивного отношения во всех вершинах имеет петли.

2. Антирефлексивность

Определение. Отношение R намножестве Х называется антирефлексивным, если ни один элемент х множества Х не находится в отношении R с самим собой.

R антирефлексивно на Х Û("х Î Х )

Пример. Отношение «прямая х перпендикулярна прямой у » на множестве прямых плоскости антирефлексивно, т.к. ни одна прямая плоскости не перпендикулярна самой себе.

Граф антирефлексивного отношения не содержит ни одной петли.

Заметим, что существуют отношения, не являющиеся ни рефлексивными, ни антирефлексивными. Например, рассмотрим отношение «точка х симметрична точке у » на множестве точек плоскости.

Точка х симметрична точке х – истинно; точка у симметрична точке у – ложно, следовательно, мы не можем утверждать, что все точки плоскости симметричны сами себе, также мы не можем и утверждать, что ни одна точка плоскости не симметрична сама себе.

3. Симметричность

Определение . Отношение R намножестве Х называется симметричным, если из того, что элемент х находится в отношении R с элементом у , следует, что и элемент у находится в отношении R с элементом х .

R симметричнона Х Û("х , у Î Х ) х R у Þ у R х

Пример. Отношение «прямая х пересекает прямую у на множестве прямых плоскости» симметрично, т.к. если прямая х пересекает прямую у , то и прямая у обязательно будет пересекать прямую х .

Граф симметричного отношения вместе с каждой стрелкой из точки х в точку у должен содержать стрелку, соединяющую те же точки, но в обратном направлении.

4. Асимметричность

Определение . Отношение R намножестве Х называется асимметричным, если ни для каких элементов х , у из множества Х не может случиться, что элемент х находится в отношении R с элементом у и элемент у находится в отношении R с элементом х .

R асимметричнона Х Û("х , у Î Х ) х R у Þ

Пример. Отношение «х < у » асимметрично, т.к. ни для какой пары элементов х , у нельзя сказать, что одновременно х < у и у < х .

Граф асимметричного отношения не имеет петель и если две вершины графа соединены стрелкой, то эта стрелка только одна.

5. Антисимметричность

Определение . Отношение R намножестве Х называется антисимметричным, если из того что х находится в отношении с у , а у находится в отношении с х следует, что х = у.

R антисимметричнона Х Û("х , у Î Х ) х R у Ù у R х Þ х = у

Пример. Отношение «х £ у » антисимметрично, т.к. условия х £ у и у £ х одновременно выполняются только тогда, когда х = у.

Граф антисимметричного отношения имеет петли и если две вершины графа соединены стрелкой, то эта стрелка только одна.

6. Транзитивность

Определение . Отношение R намножестве Х называется транзитивным, если для любых элементов х , у , z из множества Х из того, что х находится в отношении с у , а у находится в отношении с z следует, что х находится в отношении с z.

R транзитивнона Х Û("х , у , z Î Х ) х R у Ù у R z Þ х R z

Пример. Отношение «х кратно у » транзитивно, т.к. если первое число кратно второму, а второе кратно третьему, то первое число будет кратно третьему.

Граф транзитивного отношения с каждой парой стрелок от х к у и от у к z содержит стрелку, идущую от х к z.

7. Связность

Определение . Отношение R намножестве Х называется связным, если для любых элементов х , у из множества Х х находится в отношении с у или у находится в отношении с х или х = у .

R связнона Х Û("х , у , z Î Х ) х R у Ú у R z Ú х = у

Другими словами: отношение R намножестве Х называется связным, если для любых различных элементов х , у из множества Х х находится в отношении с у или у находится в отношении с х или х = у .

Пример. Отношение «х < у » связно, т.к. какие бы мы действительные числа не взяли, обязательно одно из них будет больше другого или они равны.

На графе связного отношения все вершины соединены между собой стрелками.

Пример. Проверить, какими свойствами обладает

отношение «х – делитель у », заданное на множестве

Х = {2; 3; 4; 6; 8}.

1) данное отношение рефлексивно, т.к. каждое число из данного множества является делителем самого себя;

2) свойством антирефлексивности данное отношение не обладает;

3) свойство симметричности не выполняется, т.к. например, 2 является делителем числа 4, но 4 делителем числа 2 не является;

4) данное отношение антисимметрично: два числа могут быть одновременно делителями друг друга только в том случае, если эти числа равны;

5) отношение транзитивно, т.к. если одно число является делителем второго, а второе – делителем третьего, то первое число обязательно будет делителем третьего;

6) отношение свойством связности не обладает, т.к. например, числа 2 и 3 на графе стрелкой не соединены, т.к. два различных числа 2 и 3 делителями друг друга не являются.

Таким образом, данное отношение обладает свойствами рефлексивности, асимметричности и транзитивности.

§ 3. Отношение эквивалентности.
Связь отношения эквивалентности с разбиением множества на классы

Определение. Отношение R на множестве Х называется отношением эквивалентности, если оно рефлексивно, симметрично и транзитивно.

Пример. Рассмотрим отношение «х однокурсник у » на множестве студентов педфака. Оно обладает свойствами:

1) рефлексивности, т.к. каждый студент является однокурсником самому себе;

2) симметричности, т.к. если студент х у , то и студент у является однокурсником студента х ;

3) транзитивности, т.к. если студент х - однокурсник у , а студент у – однокурсник z , то студент х будет однокурсником студента z .

Таким образом, данное отношение обладает свойствами рефлексивности, симметричности и транзитивности, а значит, является отношением эквивалентности. При этом множество студентов педфака можно разбить на подмножества, состоящие из студентов, обучающихся на одном курсе. Получаем 5 подмножеств.

Отношением эквивалентности являются также, например, отношение параллельности прямых, отношение равенства фигур. Каждое такое отношение связано с разбиением множества на классы.

Теорема. Если на множестве Х задано отношение эквивалентности, то оно разбивает это множество на попарно непересекающиеся подмножества (классы эквивалентности).

Верно и обратное утверждение: если какое-либо отношение, заданное на множестве Х , порождает разбиение этого множества на классы, то оно является отношением эквивалентности.

Пример. На множестве Х = {1; 2; 3; 4; 5; 6; 7; 8} задано отношение «иметь один и тот же остаток при делении на 3». Является ли оно отношением эквивалентности?

Построим граф данного отношения:


Данное отношение обладает свойствами рефлексивности, симметричности и транзитивности, следовательно, является отношение эквивалентности и разбивает множество Х на классыэквивалентности. В каждом классе эквивалентности будут числа, которые при делении на 3 дают один и тот же остаток: Х 1 = {3; 6}, Х 2 = {1; 4; 7}, Х 3 = {2; 5; 8}.

Считают, что класс эквивалентности определяется любым своим представителем, т.е. произвольным элементом этого класса. Так, класс равных дробей можно задать, указав любую дробь, принадлежащую этому классу.

В начальном курсе математики также встречаются отношения эквивалентности, например, «выражения х и у имеют одинаковые числовые значения», «фигура х равна фигуре у ».