Перспективы современной энергетики. Проблемы и перспективы современной энергетики - реферат Что представляет собой современная энергетика






























Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Презентация представляет собой дополнительный материал к урокам, посвящённым развитию энергетики. Энергетика любой страны является основой развития производительных сил, создания материально – технической базы общества. В презентации отражены проблемы и перспективы всех видов энергетики, перспективные (новые) виды энергетики, используется опыт музейной педагогики, самостоятельные поисковые работы обучающихся (работа с журналом «Япония сегодня»), творческие работы обучающихся (плакаты). Презентацию можно использовать на уроках географии в 9 и 10 классах, во внеурочной деятельности (занятиях на факультативах, элективных курсах), в проведении Недели географии «22 апреля – День Земли», на уроках экологии и биологии «Глобальные проблемы человечества. Сырьевая и энергетическая проблема».

В своей работе я использовала метод проблемного обучения, который заключался в создании перед обучающимися проблемных ситуаций и разрешении их в процессе совместной деятельности учащихся и учителя. При этом учитывалась максимальная самостоятельность обучающихся и под общим руководством учителя, направляющего деятельность обучающихся.

Проблемное обучение позволяет не только сформировать у обучающихся, необходимую систему знаний, умений и навыков, достигать высокого уровня развития школьников, но, что особенно важно, оно позволяет сформировать особый стиль умственной деятельности, исследовательскую активность и самостоятельность обучающихся. При работе с данной презентацией у обучающихся проявляется актуальное направление – исследовательская деятельность школьников.

Отрасль объединяет группу производств, занятых добычей и транспортировкой топлива, выработкой энергии и передачей её потребителю.

Природные ресурсы, которые используют для получения энергии – это топливные ресурсы, гидроресурсы, ядерная энергия, а также альтернативные виды энергии. Размещение большинства отраслей промышленности зависит от развития электроэнергии. Наша страна располагает огромными запасами топливно – энергетических ресурсов. Россия была, есть и будет одной из ведущих энергетических держав мира. И это не только потому, что в недрах страны находится 12% мировых запасов угля, 13% нефти и 36% мировых запасов природного газа, которых достаточно для полного обеспечения собственных потребностей и для экспорта в сопредельные государства. Россия вошла в число ведущих мировых энергетических держав, прежде всего, благодаря созданию уникального производственного, научно – технического и кадрового потенциала ТЭК.

Сырьевая проблема

Минеральные ресурсы – первоисточник, исходная основа человеческой цивилизации практически во всех фазах ее развития:

– Топливные полезные ископаемые;
– Рудные полезные ископаемые;
– Нерудные полезные ископаемые.

Современные темпы энергопотребления растут в геометрической прогрессии. Если даже учесть, что темпы роста потребления электроэнергии несколько сократятся из-за совершенствования энергосберегающих технологий, запасов электрического сырья хватит максимум на 100 лет. Однако положение усугубляется ещё и несоответствием структуры запасов и потребления органического сырья. Так, 80% запасов органического топлива приходится на уголь и лишь 20% на нефть и газ, в то время как 8/10 современного энергопотребления приходится на нефть и газ.

Следовательно, временные рамки ещё более сужаются. Однако лишь сегодня человечество избавляется от идеологических представлений о том, что они практически бесконечны. Ресурсы минерального сырья ограничены, фактически невосполнимы.

Энергетическая проблема.

Сегодня энергетика мира базируется на источниках энергии:

– Горючих минеральных ископаемых;
– Горючих органических ископаемых;
– Энергия рек. Нетрадиционные виды энергии;
– Энергия атома.

При современных темпах подорожания топливных ресурсов Земли проблема использования возобновляемых источников энергии становится всё более актуальной и характеризует энергетическую и экономическую независимости государства.

Преимущества и недостатки ТЭС.

Преимущества ТЭС:

1. Себестоимость электроэнергии на ГЭС очень низкая;
2. Генераторы ГЭС можно достаточно быстро включать и выключать в зависимости от потребления энергии;
3. Отсутствует загрязнение воздуха.

Недостатки ТЭС:

1. Строительство ГЭС может быть более долгим и дорогим, чем других энергоисточников;
2. Водохранилища могут занимать большие территории;
3. Плотины могут наносить ущерб рыбному хозяйству, поскольку перекрывают путь к нерестилищам.

Преимущества и недостатки ГЭС.

Преимущества ГЭС:
– Строятся быстро и дешево;
– Работают в постоянном режиме;
– Размещены практически повсеместно;
– Преобладание ТЭС в энергетическом хозяйстве РФ.

Недостатки ГЭС:

– Потребляют большое количество топлива;
– Требует длительной остановки при ремонтах;
– Много тепла теряется в атмосфере, выбрасывают много твердых и вредных газов в атмосферу;
– Крупнейшие загрязнители окружающей среды.

В структуре выработки электроэнергии в мире первое место принадлежит тепловым электростанциям (ТЭС) – их доля составляет 62%.
Альтернативой органическому топливу и возобновляемым источником энергии является гидроэнергетика. Гидроэлектростанция (ГЭС) - электростанция, в качестве источника энергии использующая энергию водного потока. Гидроэлектростанции обычно строят на реках, сооружая плотины и водохранилища. Гидроэнергетика – это получение электроэнергии за счет использования возобновляемых речных, приливных, геотермальных водных ресурсов. Это использование возобновляемых водных ресурсов предполагает управление паводками, укрепление русла рек, переброс водных ресурсов в районы, страдающие от засухи, сохранение подземных токовых вод.
Однако и здесь источник энергии достаточно сильно ограничен. Это связано с тем, что крупные реки, как правило сильно удалены от промышленных центов либо их мощности практически полностью использованы. Таким образом, гидроэнергетика, в настоящий момент обеспечивающего около 10% производства энергии в мире, не сможет существенно увеличить эту цифру.

Проблемы и перспективы АЭС

В России доля атомной энергии достигает 12%. Имеющиеся в России запасы добытого урана обладают электропотенциалом в 15 трлн. кВт.ч, это столько сколько смогут выработать все наши электростанции за 35 лет. На сегодня только атомная энергетика
способна резко и за короткий срок ослабить явление парникового эффекта. Актуальной проблемой является безопасность АЭС. 2000 год стал началом перехода принципиально новые подходы к нормированию и обеспечению радиационной безопасности АЭС.
За 40 лет развития атомной энергетики в мире построено около 400 энергоблоков в 26 странах мира. Основными преимуществами атомной энергетики являются высокая конечная рентабельность и отсутствие выбросов в атмосферу продуктов сгорания, основными недостатками является потенциальная опасность радиоактивного заражения окружающей среды продуктами деления ядерного топлива при аварии и проблема переработки использованного ядерного топлива.

Нетрадиционная (альтернативная энергетика)

1. Солнечная энергетика . Это использование солнечного излучения для получения энергии в каком-либо виде. Солнечная энергетика использует возобновляемый источник энергии и в перспективе может стать экологически чистой.

Преимущества солнечной энергии:

– Общедоступность и неисчерпаемость источника;
– Теоретически, полная безопасность для окружающей среды.

Недостатки солнечной энергии:

– Поток солнечной энергии на поверхности Земли сильно зависит от широты и климата;
– Солнечная электростанция не работает ночью и недостаточно эффективно работает в утренних и вечерних сумерках;
Фотоэлементы содержат ядовитые вещества, например, свинец, кадмий, галлий, мышьяк и т. д., а их производство потребляет массу других опасных веществ.

2. Ветроэнергетика . Это отрасль энергетики, специализирующаяся на использовании энергии ветра - кинетической энергии воздушных масс в атмосфере. Так как энергия ветра является следствием деятельности солнца, то её относят к возобновляемым видам энергии.

Перспективы ветроэнергетики.

Ветроэнергетика является бурно развивающейся отраслью, так в конце 2007 года общая установленная мощность всех ветрогенераторов составила 94,1 гигаватта, увеличившись впятеро с 2000 год. Ветряные электростанции всего мира в 2007 году произвели около 200 млрд кВт·ч, что составляет примерно 1,3 % мирового потребления электроэнергии. Прибрежная ферма ветроэнергетических установок Миддельгрюнден, около Копенгагена, Дания. На момент постройки она была крупнейшей в мире.

Возможности реализации ветроэнергетики в России. В России возможности ветроэнергетики до настоящего времени остаются практически не реализованными. Консервативное отношение к перспективному развитию топливно-энергетического комплекса практически тормозит эффективное внедрение ветроэнергетики, особенно в Северных районах России, а также в степной зоне Южного Федерального Округа, и в частности в Волгоградской области.

3. Термоядерная энергетика. Солнце - природный термоядерный реактор. Ещё более интересной, хотя и относительно отдалённой перспективой выглядит использование энергии ядерного синтеза. Термоядерные реакторы, по расчётам, будут потреблять меньше топлива на единицу энергии, и как само это топливо (дейтерий, литий, гелий-3), так и продукты их синтеза нерадиоактивны и, следовательно, экологически безопасны.

Перспективы термоядерной энергетики. Данная область энергетики имеет огромный потенциал, в настоящее время в рамках проекта "ITER", в котором участвуют Европа, Китай, Россия, США, Южная Корея и Япония во Франции идет строительство крупнейшего термоядерного реактора, целью которого является вывести УТС (Управляемый термоядерный синтез) на новый уровень. Строительство планируется завершить в 2010 году.

4. Биотопливо, биогаз. Биотопливо - это топливо из биологического сырья, получаемое, как правило, в результате переработки стеблей сахарного тростника или семян рапса, кукурузы, сои. Различается жидкое биотопливо (для двигателей внутреннего сгорания, например, этанол, метанол, биодизель) и газообразное (биогаз, водород).

Виды биотоплива:

– Биометанол
– Биоэтанол
– Биобутанол
– Диметиловый эфир
– Биодизель
– Биогаз
– Водород

На данный момент самые развитые – биодизель и водород.

5. Геотермальная энергия. Под вулканическими островами Японии скрыты огромные количества геотермальной энергии, этой энергией можно воспользоваться извлекая горячую воду и пар. Преимущество: выделяет примерно в 20 раз меньше углекислого газа при производстве электричества, что снижает ее влияние на глобальную окружающую среду.

6. Энергия волн, приливов и отливов. В Японии важнейший источник энергии волновые турбины, которые преобразуют вертикальное движение океанских волн в давление воздуха вращающего турбины электрогенераторов. На побережье Японии установлено большое количество буев, использующих энергию приливов и отливов. Так используют энергию океана для обеспечения безопасности океанского транспорта.

Огромный потенциал энергии Солнца мог бы теоритически обеспечить все мировые потребности энергетики. Но КПД преобразования тепла в электроэнергию всего 10%. Это ограничивает возможности Солнечной энергетики. Принципиальные трудности возникают и при анализе возможностей создания генераторов большой мощности, использующих энергию ветра, приливы и отливы, геотермальную энергию, биогаз, растительное топливо и т.д. Всё это приводит к выводу об ограниченности возможностей рассмотренных так называемых «воспроизводимых» и относительно экологически чистых ресурсов энергетики, по крайней мере, в относительно близком будущем. Хотя эффект от их использования при решении отдельных частных проблем энергообеспечения может быть уже сейчас весьма впечатляющим.

Конечно, существует оптимизм по поводу возможностей термоядерной энергии и других эффективных способов получения энергии, интенсивно исследуемых наукой, но при современных масштабах энергопроизводства. При практическом освоении этих возможных источников потребуется несколько десятков лет из-за высокой капиталоёмкости и соответствующей инерционности в реализации проектов.

Исследовательские работы обучающихся:

1. Спецрепортаж «Зеленая энергия» для будущего: «Японии является мировым лидером по производству солнечной электроэнергии. 90% солнечной энергии, производимой в Японии, вырабатывается солнечными панелями в обычных домах. Японское правительство поставило цель в 2010 году получить примерно 4,8 млн. кВт энергии от солнечных батарей. Производство электроэнергии из биомассы в Японии. Из кухонных отходов выделяют газ метан. На этом газе работает двигатель, который генерирует электричество, также создаются благоприятные условия для защиты окружающей среды.

Некоторые пути решения экологических проблем

В ближайшей перспективе тепловая энергетика будет оставаться преобладающей в энергетическом балансе мира и отдельных стран.

Существенно уменьшить отрицательное воздействие на окружающую среду позволяют следующие пути и способы использования топлива (базирующиеся в основном на совершенствовании технологий подготовки топлива и улавливания вредных отходов):

1. Использование и совершенствование очистных устройств (улавливание твердых выбросов и окислов серы (96 %) и азота (80 %) и получение аммиачной селитры – удобрения и раствора сульфата натрия для химической промышленности).

2. Уменьшение поступления соединений серы в атмосферу путем предварительной десульфурации углей (снижения в них содержания серы) и других видов топлива (нефть, газ, горючие сланцы) химическими или физическими методами. Этими методами удается извлечь из топлива до 50 – 70 % серы до момента его сжигания.

3. Экономия электроэнергии – снижение энергоемкости изделий (в США на единицу получаемой продукции расходовалось в 2 раза меньше энергии, чем в бывшем СССР, в Японии – в 3 раза меньше), снижение металлоемкости продукции, повышение качества и, как следствие, увеличение срока службы.

4. Экономия энергии в быту и на производстве за счет совершенствования изоляционных свойств зданий. Отказ от использования электроэнергии в качестве источника тепла, так как потери при производстве ее на ТЭС больше на 60 – 65 %, чем при получении тепловой энергии, а на АЭС больше 70 %.

5. Повышение КПД топлива при использовании его вместо ТЭС на ТЭЦ за счет приближения объектов получения энергии к потребителю и снижения теплового загрязнения водной среды при использовании на ТЭЦ тепла, улавливаемого охлаждающими агентами. Наиболее экономично получение энергии на небольших установках типа ТЭЦ (когенерирование) непосредственно в зданиях.

Экономическая эффектив­ность освоения энергосбере­гающих технологий в широ­ких масштабах становится существенной при уровне энергопотребления примерно 10 кВт на одного человека. В России сейчас этот показа­тель держится на уровне при­мерно 2 кВт, причем в струк­туре энергопотребления дов­леет промышленная состав­ляющая.

Для примера: если в США на непромышленную сферу (бытовую, социально-культурную и т.п.) прихо­дится более 50 % энергопот­ребле-ния, то в России - не более 25 %.

2.14.1. Альтернативные источники получения энергии

Основные проблемы современных источников энергии – исчерпаемость и загрязнение среды. Альтернативными источниками являются энергия Солнца, ветра, вод, термоядерного синтеза и др. источников. Хотя использование невозобно­вимых энергоресурсов ископаемых топлив создает самые серьез­ные экономические и экологические проблемы, человек намного меньше использует возобновимые энергоресурсы природы. Не пото­му, что они меньше (они намного больше), а потому, что их ко­лоссальная энергия непостоянна, распределена на больших про­странствах, мало концентрирована и плохо поддается контролю.


2.14.2. Энергия Солнца

Солнечная энергия по сравнению с другими видами энергии об­ладает исключительными свойствами: практически неисчерпаема, экологически чистая, управляема, а по величине в тысячи раз пре­восходит всю энергию других источников, которые сможет ис­пользовать человечество. Потенциал эксплуатационного ресурса солнечной энергии оценивается по мощности от 100 до 500 ТВт. Из-за малой плотности этой энергии техносфера потребляет ни­чтожную ее часть. Некоторое количество используется в пассив­ной форме - для создания благоприятного теплового режима в системах закрытого грунта. Эта форма использования, а также со­вершенствование технических средств теплового аккумулирования солнечной энергии и тепловых насосов имеют очень большую перспективу.

Однако больший интерес проявляют к спосо­бам концентрирования солнечной энергии и ее прямому преобразованию в электроэнергию. При этом решающее значение имеют такие факторы, как энергетическая освещенность, площадь улавливания, КПД преобразования и эффективность аккумулирования. Технический потенциал использования солнечной энергии оценивается в 500 ГВт. Общая мощность систем прямого преобразования солнечной энергии в настоящее время достигла 4 ГВт, в том числе наземных фотоэлектрических преобразователей - 100 МВт.

Энергию солнца можно использовать прямо (посредством улавливания техническими устройствами) или опосредованно (через продукты фотосинтеза, круговорот воды, движение воздушных масс и другие процессы, обусловленные влияниями солнца.

1. Солнце как источник тепловой энергии.

Использование солнечного тепла – наиболее простой и дешевый путь решения отдельных энергетических проблем. Подсчитано, что в США для обогрева помещений и горячего водоснабжения расходуется около 25 % производимой в стране энергии. В северных странах, в том числе и в России, эта доля заметно выше. Между тем значительная доля тепла, необходимого для этих целей, может быть получена посредством улавливания энергии солнечных лучей. Эти возможности тем значительнее, чем больше прямой солнечной радиации поступает на поверхность Земли.

Способы использования:

а) солнечные коллекторы ;

Наиболее распространено улавливание солнечной энергии посредством различного рода солнечных коллекторов.

В простейшем виде это темного цвета поверхности для улавливания тепла и приспособления для его накопления и удержания. Оба блока могут представлять единое целое.

Коллекторы помещаются в прозрачную камеру, которая действует по принципу парника. Имеются также устройства для уменьшения рассеивания энергии (хорошая изоляция) и ее отведения, например, потоками воздуха или воды.

б) нагревательные системы пассивного типа;

Еще более просты, чем коллекторы. Циркуляция теплоносителей здесь осуществляется в результате конвекционных токов: нагретый воздух или вода поднимаются вверх, а их место занимают охлажденные теплоносители. Пример: помещение с обширными окнами, обращенными к солнцу, и хорошими изоляционными свойствами материалов, способных длительно удерживать тепло. Для уменьшения перегрева днем и теплоотдачи ночью используются шторы, жалюзи, козырьки и другие защитные приспособления.

Проблема наиболее рационального использования солнечной энергии решается через правильное проектирование зданий. Некоторое удорожание строительства перекрывается эффектом использования дешевой и чистой энергии.

В США (Калифорния) имеются строения, которые даже при пассивном типе аккумуляции солнечных лучей позволяют экономить до 75 % расходов на энергию, при дополнительных строительных затратах 5 – 10 %.

На Кипре в 90 % коттеджей, многих отелях и многоквартирных домах проблема теплообеспечения и горячего водоснабжения решается за счет солнечных водонагревателей. В других странах целенаправленное использование солнечной энергии пока не велико, но интенсивно увеличивается производство различного рода солнечных коллекторов. В США сейчас действуют тысячи подобных систем, хотя обеспечивают они пока только 0,5 % горячего водоснабжения.

в) устройства для накопления тепла в солнечное время суток в парниках или других сооружениях;

Для этого в помещениях размещают материал с большой поверхностью и хорошей теплоемкостью. Это могут быть камни, крупный песок, вода, щебенка, металл. Днем они накапливают тепло, а ночью постепенно отдают его. Такие устройства широко используются в тепличных хозяйствах юга России, в Казахстане, Средней Азии.

2. Солнце как источник электроэнергии.

Способы использования:

а) фотоэлементы;

В фотоэлементах солнечная энергия индуцируется в электрический ток без дополнительных устройств. Хотя КПД таких устройств невелик, но они выгодны медленной изнашиваемостью вследствие отсутствия каких-либо подвижных частей.

Основные трудности применения фотоэлементов связаны с их дороговизной и потребностями в больших территориях для их размещения. Проблема в какой-то мере решаема за счет замены металлических фотопреобразователей энергии эластичными, синтетическими, использования крыш и стен домов для размещения батарей, выноса преобразователей в космическое пространство.

В тех случаях, когда требуется получение небольшого количества энергии, использование фотоэлементов уже в настоящее время экономически целесообразно (калькуляторы, телефоны, телевизоры, кондиционеры, маяки, буи, небольшие оросительные системы).

В странах с большим количеством солнечной радиации имеются проекты полной электрификации отдельных отраслей хозяйства, например, сельского, за счет солнечной энергии. Получаемая таким путем энергия, особенно с учетом ее высокой экологичности, по стоимости оказывается более выгодной, чем энергия, получаемая традиционными методами. Солнечные станции привлекательны также возможностью быстрого ввода в строй и наращивания их мощности в процессе эксплуатации простым присоединением дополнительных батарей – солнцеприемников.

б) превращение воды в пар , который приводит в движение турбогенераторы;

В этих случаях для энергонакопления наиболее часто используются энергобашни с большим количеством линз, концентрирующих солнечные лучи, а также специальные солнечные пруды , состоящие из двух слоев воды: нижнего с высокой концентрацией солей и верхнего с прозрачной пресной водой. Роль материала, накапливающего энергию, выполняет солевой раствор. Нагретая вода используется для обогрева или превращения в пар жидкостей, кипящих при невысоких температурах.

3. Солнечная энергия как источник для получения водорода из воды путем электролиза.

Водород называют “топливом будущего”. Разложение воды и высвобождение водорода осуществляется в процессе пропускания между электродами электрического тока, полученного на гелеоустановках. Недостатки таких установок пока связаны с невысоким КПД (энергия, содержащаяся в водороде, лишь на 20 % превышает ту, которая затрачена на электролиз воды) и высокой воспламеняемостью водорода, а также его диффузией через емкости для хранения.

Германией рассматриваются проекты получения жидкого водорода, используя избыточные гидроресурсы Канады или размещения солнечных батарей в пустыне Сахара, а затем транспортировки полученного электролизом жидкого водорода в танкерах либо по сети трубопроводов к месту потребления. Особенно перспективно его применение как топлива для летательных аппаратов, автотранспорта и космической техники. Однако есть трудности для реализации проекта: получаемый водород может находиться в жидком состоянии при атмосферном давлении только при температуре -253 °С и при этом он легко испаряется, поэтому особые требования предъявляются к емкостям для хранения – необходимо сооружение контейнеров в виде сосуда Догоара для обеспечения сверхнизких температур и предохранения от быстрого испарения. Кроме того, цена водорода высока, дороже бензина.

4. Использование солнечной энергии через фотосинтез и биомассу (биотопливо).

В биомассе концентрируется ежегодно меньше 1 % потока солнечной энергии. Однако эта энергия существенно превышает ту, которую получает человек из различных источников в настоящее время и будет получать в будущем.

Способы использования:

а) прямое сжигание биомассы ;

Это самый простой путь использования энергии фотосинтеза. В отдельных странах, не вступивших на путь промышленного развития, такой метод является основным.

б) переработка биомассы в другие виды топлива ;

Так можно получать биогаз (путем анаэробного – без доступа кислорода брожения) или этиловый спирт (путем аэробного брожения).

Это более оправданный способ. Имеются данные о том, что молочная ферма на 2 тысячи голов способна за счет использования отходов обеспечить биогазом не только само хозяйство, но и приносить ощутимый доход от реализации получаемой энергии. Большие энергетические ресурсы сосредоточены также в канализационном иле, мусоре и других органических отходах.

Спирт, получаемый из биоресурсов, все более широко используют в двигателях внутреннего сгорания Так, Бразилия с 70-х годов ХХ века значительную часть автотранспорта перевела на спиртовое горючее или на смесь спирта с бензином - бензоспирт. Опыт использования спирта как энергоносителя имеется в США.

Для получения спирта используется разное органическое сырье – сахарный тростник в Бразилии, кукуруза в США, различные зерновые культуры, картофель, древесная масса (опилки) – в других странах. Ограничивающими факторами для использования спирта в качестве энергоносителя являются недостаток земель для получения органической массы и загрязнение среды при производстве спирта (сжигание ископаемого топлива), а также более высокая стоимость (примерно в два раза дороже бензина).

Для России, где большое количество древесины, особенно лиственных пород (береза, осина), практически не используются (не вырубается или остается на лесосеках), весьма перспективным является получение спирта из этой биомассы по технологиям, в основе которых лежит гидролиз. Большие резервы для получения спиртового горючего или тепловой энергии имеются также на базе отходов лесопильных и деревообрабатывающих предприятий.

в) выращивание “энергетических культур” или “энергетических лесов”;

“Энергетические леса” – это фитоценозы, выращиваемые для переработки их биомассы в газ или жидкое горючее. Под “энергетические леса” обычно отводятся земли, на которых по интенсивным технологиям за короткие сроки (5 – 10 лет) выращивается и снимается урожай быстрорастущих видов деревьев (тополя, эвкалипты и другие). В целом же биотопливо можно рассматривать как существенную помощь в решении энергетических проблем в будущем. Основное преимущество этого ресурса – его постоянная и быстрая возобновимость, а при грамотном использовании и неистощимость.

2.14.3. Ветер как источник энергии

Ветер, как и движущаяся вода, являются наиболее древними источниками энергии. В течение нескольких столетий эти источники использовались как механические на мельницах, пилорамах, в системах подачи воды к местам потребления. Они же используются и для получения электроэнергии, хотя доля ветра в общем объеме производства крайне незначительна (в Дании 3,7 % от общего объема производства электроэнергии).

Интерес к использованию ветра для получения электроэнергии оживился в последние годы. К настоящему времени испытаны ветродвигатели различной мощности, вплоть до гигантских. Сделаны выводы, что в районах с интенсивным движением воздуха ветроустановки вполне могут обеспечивать энергией местные потребности.

Оправдано использование ветротурбин для обслуживания отдельных объектов (жилых домов, неэнергоемких производств). Вместе с тем стало очевидным, что гигантские ветроустановки пока не оправдывают себя вследствие дороговизны сооружений, сильных вибраций, шумов, быстрого выхода из строя. Более экономичны комплексы из небольших ветротурбин, объединенных в одну систему.

В США сооружена ветроэлектростанция на базе объединения большого числа мелких ветротурбин мощностью около 1500 МВт (примерно 1,5 АЭС). Широко ведутся работы по использованию энергии ветра в Канаде, Нидерландах, Дании, Швеции, Германии. Кроме неисчерпаемости ресурса и высокой экологичности производства, к достоинствам ветротурбин относится невысокая стоимость получаемой на них энергии. Она здесь в 2-3 раза меньше, чем на ТЭС и АЭС.

Для большинства извест­ных ветрогенераторов расчет­ная скорость ветра, при которой обеспечивается номинальная мощность, должна составлять 8-14 м/с и по эко­номическим соображениям должна выдерживаться не менее 2500 часов в год. Такие условия на значительной части территорий РФ отсутствуют.

2.14.4. Использование нетрадиционных гидроресурсов

Гидроресурсы остаются важным потенциальным источником энергии при условии использования более экологичных, чем современные, методов ее получения. Например, крайне недостаточно используются энергоресурсы средних и малых рек (длина от 10 до 200 км). Только в России таких рек имеется более 150 тысяч. В прошлом именно малые и средние реки являлись важнейшим источником получения энергии.

Небольшие плотины на реках не столько нарушают сколько оптимизируют гидрологический режим рек и прилежащих территорий. Их можно рассматривать как пример экологически обусловленного природопользования, мягкого вмешательства в природные процессы.

Водохранилища, создававшиеся на малых реках, обычно не выходили за пределы русел. Такие водохранилища гасят колебания воды в реках и стабилизируют уровни грунтовых вод под прилежащими пойменными землями. Это благоприятно сказывается на продуктивности и устойчивости как водных, так и пойменных экосистем. Имеются расчеты, что на мелких и средних реках можно получать не меньше энергии, чем ее получают на современных крупных ГЭС.

В настоящее время имеются турбины, позволяющие получать энергию, используя естественное течение рек, без строительства плотин. Такие турбины легко монтируются на реках и при необходимости перемещаются в другие места. Хотя стоимость получаемой на таких установках энергии заметно выше, чем на крупных ГЭС, ТЭС или АЭС, но высокая экологичность делает целесообразным ее получение.

2.14.5. Энергетические ресурсы морских, океанических

и термальных вод

Большими энергоресурсами обладают водные массы морей и океанов. К ним относятся энергия приливов и отливов, морских течений, а также градиентов температур на различных глубинах. В настоящее время эта энергия используется в крайне незначительном количестве из-за высокой стоимости получения. Это, однако, не означает, что и в дальнейшем ее доля в энергобалансе не будет повышаться.

1. В мире пока действуют три приливно-отливные электростанции. В России возможности приливно-отливной энергии значительны на Белом море. Однако, кроме высокой стоимости энергии, электростанции такого типа нельзя отнести к высокоэкологичным. При их строительстве плотинами перекрываются заливы, что резко изменяет экологические факторы и условия обитания организмов.

2. В океанических водах для получения энергии можно использовать разность температур на различных глубинах. В теплых течениях, например, в Гольфстриме, они достигают 20 °С. В основе принципа лежит применение жидкостей, кипящих и конденсирующихся при небольших разностях температур.

Теплая вода поверхностных слоев и используется для превращения жидкости в пар, который вращает турбину. Холодные глубинные массы – для конденсации пара в жидкость. Трудности связаны с громоздкостью сооружений и их дороговизной. Установки такого типа находятся пока на стадии испытаний (например, в США).

3. Несравнимо более реальны возможности использования геотермальных ресурсов. В данном случае источником тепла являются разогретые воды, содержащиеся в недрах земли. В отдельных районах такие воды изливаются не поверхность в виде гейзеров (например, на Камчатке). Геотермальная энергия может использоваться как в виде тепловой, так и для получения электричества.

4. Ведутся также опыты по использованию тепла, содержащегося в твердых структурах земной коры. Такое тепло из недр извлекается посредством закачки воды, которую затем используют так же, как и другие термальные воды.

Уже в настоящее время отдельные города или предприятия обеспечиваются энергией геотермальных вод. Это, в частности, относится к столице Исландии – Рейкъявику. В начале 80-х годов в мире производилось на геотермальных электростанциях около 5000 МВт электроэнергии (примерно 5 АЭС). В России значительные ресурсы геотермальных вод имеются на Камчатке, но используются они пока в небольшом объеме. В бывшем СССР за счет этого вида ресурсов производилось только около 20 МВт электроэнергии.

2.14.6. Термоядерная энергия

Современная атомная энергетика базируется на расщеплении ядер атомов на два более легких с выделением энергии пропорционально потере массы. Источником энергии и продуктами распада при этом являются радиоактивные элементы. С ними связаны основные экологические проблемы ядерной энергетики.

Еще большее количество энергии выделяется в процессе ядерного синтеза, при котором два ядра сливаются в одно более тяжелое, но также с потерей массы и выделением энергии. Исходным элементом для синтеза является водород, конечным – гелий. Оба элемента не оказывают отрицательного влияния не среду и практически неисчерпаемы. Результатом ядерного синтеза является энергия солнца. Человеком этот процесс смоделирован при взрывах водородных бомб. Задача состоит в том, чтобы ядерный синтез сделать управляемым, а его энергию использовать целенаправленно.

Основная трудность заключается в том, что ядерный синтез возможен при очень высоких давлениях и температурах около 100 млн °С. Отсутствуют материалы, из которых можно изготовить реакторы для осуществления сверхвысокотемпературных (термоядерных) реакций. Любой материал при этом плавится и испаряется.

Ученые пошли по пути поиска возможностей осуществления реакций в среде, не способной к испарению Для этого в настоящее время испытываются два пути. Один из них основан на удержании водорода в сильном магнитном поле. Установка такого типа получила название ТОКАМАК (тороидальная камера с магнитным полем), разработана в институте им. Курчатова. Второй путь – использование лазерных лучей, за счет которых обеспечивается получение нужной температуры и в места концентрации которых подается водород.

Несмотря на некоторые положительные результаты по осуществлению управляемого ядерного синтеза, высказываются мнения, что в ближайшей перспективе он вряд ли будет использован для решения энергетических и экологических проблем. Это связано с нерешенностью многих вопросов и с необходимостью колоссальных затрат на дальнейшие экспериментальные, а тем более промышленные разработки.

ªВопросы для самопроверки

1. Какие новые методы использования топлива позволяют уменьшить воздействие энергетики на ОС?

2. В чем преимущества использования солнечной энергии по сравнению с другими видами энергии?

3. Назовите способы использования солнца как источника тепловой и электроэнергии.

4. Каковы перспективы применения жидкого водорода в энергетике?

5. Что такое биотопливо, как его получают?

6. Что такое “энергетический лес” ?

7. Какие проблемы препятствуют широкому использованию ветра как источника энергии?

8. Сравните воздействие на ОС малых и крупных ГЭС.

9. В чем заключается отрицательное влияние приливно–отливных ГЭС на экосистемы?

10. Каков принцип получения энергии за счет градиентов температур в океане?

11. Каковы условия протекания реакции термоядерного синтеза и какие сложности с этим связаны в настоящее время?


Современная электроэнергетика
имеет немало проблем, они обусловлены высокой стоимостью топлива, негативным влиянием на экологию и т.д..

Так, например, гидроэнергетические технологии имеют много преимуществ, но есть и существенные недостатки. Наклад, дождливые сезоны, низкие водные ресурсы во засухи могут серьезно влиять на количество произведенной энергии. Это может стать серьезной проблемой там, где гидроэнергия составляет значительную часть в энергетическом комплексе страны, плотин является причиной многих проблем: переселение жителей, пересыхание природных русел рек, заиление водохранилищ, водных споров между соседними странами, значительной стоимости этих проектов. ГЭС на равнинных реках приводит к затоплению больших территорий. Значительная часть площади водоемов, образующихся — мелководье. В летнее время за счет солнечной радиации в них активно развивается водная растительность, происходит так называемое «цветение» воды.

Изменение уровня воды, местами доходит до полного высушивания, приводит к гибели растительности. Плотины препятствуют миграции рыб. Многокаскадные ГЭС уже сейчас превратили реки в ряд озер, где возникают болота. В этих реках погибает рыба, а вокруг них меняется микроклимат, еще больше разрушая природные экосистемы.

О вредности ТЭС, то при сгорании топлива в тепловых двигателях выделяются вредные вещества: закись углерода, соединения азота, соединения свинца, а также выделяется в атмосферу значительное количество теплоты.

Кроме того, применение паровых турбин на ТЭС требует отвода больших площадей под пруды, в которых охлаждается отработанный пар. Ежегодно в мире сжигается 5 млрд. тонн угля и 3,2 млрд. тонн нефти, это сопровождается выбросом в атмосфере 2 10 Дж теплоты. Запасы органического топлива на Земле распределены крайне неравномерно, и при нынешних темпах потребления угля хватит на 150-200 лет, нефти — на 40-50 лет, а газа примерно на 60 лет. Весь цикл работ, связанных с добычей, транспортировкой и сжиганием органического топлива (главным образом угля), а также с образованием отходов, сопровождается выделением большого количества химических загрязнителей. Добыча угля связан с немалым засолением водных резервуаров куда сбрасываются воды из шахт. Кроме этого, в воде, откачиваемой, содержатся изотопы радия и радон. ТЭС, хотя и имеет современные системы очистки продуктов сжигания угля, выбрасывает за год в атмосферу по разным оценкам от 10 до 120 тыс. тонн оксидов серы, 2-20 тыс. тонн оксидов азота, 700-1500 тонн пепла (без очистки — в 2-3 раза больше) и выделяет 3-7 млн. тонн оксида углерода. Кроме того, образуется более 300 тыс. тонн золы, содержащей около 400 тонн токсичных металлов (мышьяка, кадмия, свинца, ртути). Можно отметить, что ТЭС, работающей на угле, выбрасывает в атмосферу больше радиоактивных веществ, чем АЭС той же мощности. Это связано с выбросом различных радиоактивных элементов, содержащихся в угле в виде вкраплений (радий, торий, полоний и др.).. Для количественной оценки воздействия радиации вводится понятие «коллективная доза», т.е. произведение значения дозы на количество населения, подвергшихся воздействию радиации (он выражается в человеко-зиверт). Оказалось, что в начале 90-х годов прошлого века ежегодный коллективная доза облучения населения Украины за счет тепловой энергетики составляла 767 чел / н и за счет атомной — 188 чел / н.

В настоящее время в атмосферу ежегодно выбрасывается 20-30 млрд. тонн оксида углерода. Прогнозы свидетельствуют, что при сохранении таких темпов в будущем к середине века средняя температура на Земле может повыситься на несколько градусов, что приведет к непредсказуемым глобальных климатических изменений. Сравнивая экологической действие различных энергоисточников, необходимо учесть их влияние на здоровье человека. Высокий риск для работников в случае использования угля связан с его добычей в шахтах и транспортировкой и с экологическим воздействием продуктов его сжигания. Последние две причины касаются нефти и газа и влияют на все население. Установлено, что глобальное влияние выбросов от сжигания угля и нефти на здоровье людей действует примерно так же, как авария типа Чернобыльской, повторяющегося раз в год. Это — «тихий Чернобыль», последствия которого непосредственно невидимые, но постоянно влияют на экологию. Концентрация токсичных примесей в химических отходах стабильная, и в конце концов все они перейдут в экосферу, в отличие от радиоактивных отходов АЭС распадаются.

В целом реальный радиационное воздействие АЭС на окружающую среду намного (в 10 и более раз) меньше допустимого. Если учесть экологическую действие различных энергоисточников на здоровье людей, то среди возобновляемых источников энергии риск от нормально работающих АЭС минимальный как для работников, деятельность которых связана с различными этапами ядерного топливного цикла, так и для населения. Глобальный радиационный взнос атомной энергетики на всех этапах ядерного топливного цикла сейчас составляет около 0,1% естественного фона и не превысит 1% даже при интенсивном ее развития в будущем.

Добыча и переработка урановых руд также связаны с неблагоприятной экологической действием.

Коллективная доза, полученная персоналом установки и населением на всех этапах добычи урана и изготовления топлива для реакторов, составляет 14% полной дозы ядерного топливного цикла. Но главной проблемой остается захоронения высокоактивных отходов. Объем особо опасных радиоактивных отходов составляет примерно одну стотысячную часть общего количества отходов, среди которых высокотоксичные химические элементы и их устойчивые соединения. Разрабатываются методы их концентрации, надежного связывания и размещения в устойчивых геологических формациях, где, по расчетам специалистов, они могут содержаться в течение тысячелетий. Серьезным недостатком атомной энергетики является радиоактивность используемого топлива и продуктов его деления. Это требует создания защиты от различного типа радиоактивного излучения, что значительно повышает энергии, вырабатываемой АЭС. Кроме этого, еще одним недостатком АЭС является тепловое загрязнение воды, т.е. ее нагрева.

Интересно отметить, что по данным группы английских медиков, лица, которые работали в течение 1946 — 1988 годах на предприятиях британской ядерной промышленности, живут в среднем дольше, а уровень смертности среди них от всех причин, включая рак, значительно ниже. Если учитывать реальные уровни радиации и концентрации химических веществ в атмосфере, то можно сказать, что влияние последних на флору в целом довольно значительный по сравнению с воздействием радиации.

Приведенные данные свидетельствуют, что при работе энергетических установок экологическое воздействие атомной энергетики в десятки раз ниже, чем тепловой .

Неисправимым злом для Украины остается Чернобыльская трагедия. Но она больше касается того социального строя, что ее породил, чем атомной энергетики. Ведь ни на одной АЭС в мире, кроме Чернобыльской, не было аварий, непосредственно приведших к гибели людей.

Вероятностный метод расчета безопасности АЭС в целом свидетельствует, что при выработке одной и той же единицы электроэнергии, вероятность крупной аварии на АЭС в 100 раз ниже, чем в случае угольной энергетики. Выводы из такого сравнения очевидны.

Рост масштабов использования электрической энергии, обострение проблем охраны окружающей среды значительно активизировали поиски экологически чистых способов выработки электроэнергии. Интенсивно разрабатываются способы использования нетопливной возобновляемой энергии — солнечной, ветряной, геотермальной, энергии волн, приливов и отливов, энергии биогаза и т.д.. Источники этих видов энергии — неисчерпаемы, но следует разумно оценить, смогут ли они удовлетворить все потребности человечества.

Новейшие исследования направлены преимущественно на выработку электрической энергии за счет энергии ветра. Сооружаются ВЭС преимущественно постоянного тока. Ветряное колесо приводит в движение динамо-машину — электрического тока, который одновременно заряжает параллельно соединенные аккумуляторы.

Сегодня ветроэлектрические агрегаты надежно обеспечивают током нефтяников, они успешно работают в труднодоступных районах, на далеких островах, в Арктике, на тысячах сельскохозяйственных ферм, где нет поблизости крупных населенных пунктов и электростанций общего пользования.

Широкому применению ветроэлектрических агрегатов в обычных условиях пока препятствует их высокая себестоимость. При использовании ветра возникает серьезная проблема: избыток энергии в ветреную погоду и недостаток ее в период безветрия. Использование энергии ветра осложняется тем, что имеет малую плотность энергии , а также меняется его сила и направление. Ветроустановки основном используют в тех местах, где хороший ветровой режим. Для создания ветроустановок большой мощности необходимо, чтобы имел большие размеры, кроме того, воздушный винт надо поднять на достаточную высоту, поскольку на большей высоте ветер более устойчивый и имеет большую скорость. Только одна электростанция, работающая на органическом топливе, может заменить (по количеству произведенной энергии) тысячи ветровых турбин.

Веками люди размышляли над причиной морских приливов и отливов. Сегодня мы достоверно знаем, что могучее природное явление — ритмичное движение морских вод — вызывают силы притяжения Луны и Солнца. Энергия приливов огромная, ее суммарная мощность на Земле составляет около 1 млрд. кВт, что больше суммарной мощности всех рек мира.

Принцип действия приливных электростанций очень прост. Во время прилива вода, вращая гидротурбины, заполняет водоем, а после отлива она из водоема выходит в океан, снова вращая турбины. Главное — найти удобное место для установки плотины, в котором высота прилива была бы значительной. Строительство и эксплуатация электростанций — сложная задача. Морская вода вызывает коррозию большинства металлов, детали установок обрастают водорослями.

Тепловой поток солнечного излучения, который достигает Земли, очень велик. Он более чем в 5000 раз превышает суммарное использование всех видов топливно-энергетических ресурсов в мире.

Среди преимуществ солнечной энергии — ее вечность и исключительная экологическая чистота. Солнечная энергия поступает на всю поверхность Земли, только полярные районы планеты страдают от ее недостатка. То есть, практически на всем земном шаре только тучи и ночь мешают пользоваться ею постоянно. Такая общедоступность делает этот вид энергии невозможным для монополизации, в отличие от нефти и газа. Конечно, стоимость 1 кВт · час. солнечной энергии значительно выше, чем полученная традиционным методом. Лишь пятая часть солнечного света преобразуется в электрический ток, но эта доля продолжает расти благодаря усилиям ученых и инженеров мира.

Поскольку энергия солнечного излучения распределена по большой площади (иными словами, имеет низкую плотность), любая установка для прямого использования солнечной энергии должна иметь збирний устройство с достаточной поверхностью. Простейшее устройство такого рода — плоский коллектор; в принципе это черная плита, хорошо изолированная снизу.

Существуют электростанции несколько иного типа, их отличие заключается в том, что сфокусированное на вершину башни солнечное тепло приводит в движение натриевый теплоноситель, который нагревает воду до образования пара. По мнению специалистов, наиболее привлекательной идеей относительно преобразования солнечной энергии является использование фотоэлектрического эффекта в полупроводниках. Однако поверхность солнечных батарей для обеспечения достаточной мощности должна быть достаточно значительной (для суточной выработки 500 МВт-час. Необходима поверхность площадью 500 000 м 2), что довольно дорого. Солнечная энергетика относится к наиболее материалоемким видам производства энергии. Крупномасштабное использование солнечной энергии влечет гигантское увеличение потребности в материалах, а следовательно, в трудовых ресурсах для добычи сырья, его обогащения, получения материалов, изготовление гелиостатов, коллекторов, другой аппаратуры, их перевозки. Эффективность солнечных электростанций в районах, удаленных от экватора, достаточно мала из-за неустойчивых атмосферных условий, относительно слабой интенсивности солнечной радиации, а также ее колебания, обусловленные чередованием дня и ночи.

Геотермальная энергетика использует высокие температуры глубоких недр земной коры для выработки тепловой энергии.

В некоторых местах Земли, особенно на краю тектонических плит, теплота выходит на поверхность в виде горячих источников — гейзеров и вулканов. В других областях подводные источники протекают через горячие подземные пласты, и эту теплоту можно забрать через системы теплообмена. Исландия является примером страны, где широко используется геотермальная энергия.

Сейчас разработаны технологии, позволяющие добывать горючие газы из биологического сырья в результате химической реакции распада высокомолекулярных соединений на низкомолекулярные за счет деятельности особых бактерий (которые участвуют в реакции без доступа кислорода воздуха). Схема реакции: биомасса + + бактерии -> горючие газы + другие газы + удобрения.

Биомасса — это отходы сельскохозяйственного производства (животноводства, перерабатывающей промышленности).

Основным сырьем для производства биогаза является навоз, который доставляют на биогазовые станции. Главным продуктом биогазовой станции является смесь горючих газов (90% в смеси составляет метан). Эту смесь поставляют на установки для выработки тепла, на электростанции.

Возобновляемые источники (кроме энергии воды) имеют общий недостаток: их энергия очень слабо сконцентрирована, что создает немалые трудности для практического использования. Стоимость возобновляемых источников (без учета ГЭС) гораздо выше, чем традиционных. Как солнечная, так и ветровая и другие виды энергии, могут успешно использоваться для выработки электроэнергии в диапазоне мощностей от нескольких киловатт до десятков киловатт. Но эти виды энергии вполне неперспективные для создания мощных промышленных энергоисточников

Электроэнергетический комплекс без преувеличения может быть назван одной из ключевых отраслей промышленности. Без электроэнергии невозможно производство в практически любой другой области. Таким образом, от энергетики, в конечном счете, зависит вся экономика нашей страны. Попробуем разобраться, в каком состоянии в настоящий момент находится российская энергетика и чего ожидать от нее в будущем.

Россия – один из лидеров мирового энергетического рынка

В настоящее время Россия входит в десятку крупнейших производителей электроэнергии и в число стран, обладающих самыми крупными запасами энергоресурсов. Во многом сегодняшнее лидерство определили заслуги советских строителей – речь идет о масштабном строительстве тепло- и гидроэлектростанций (проект ГОЭЛРО), а позднее и АЭС. В 60-80-х годах прогресс обеспечивался за счет активного освоения природных ресурсов Западной и Восточной Сибири.

А вот в последнее десятилетие XX-века энергетика была практически заброшена. Новые проекты, введенные в работу в тот период, можно пересчитать буквально по пальцам. В начале 2000-х ситуация начала понемногу исправляться, но и проблем пока еще очень много, и темпы роста не так велики, как хотелось бы.

Бич энергетики – устаревшее оборудование и технологии, отсутствие кадров и инвестиций

По оценкам экспертов, от 50 до 80% оборудования, занятого сегодня в российском производстве энергии, уже выработало или в ближайшие годы выработает свой ресурс. А это означает, что в обозримом будущем мы вполне сможем столкнуться с нехваткой электроэнергии и, как не трудно догадаться, с повышением цен. Несмотря на то, что с 2003 года наблюдается рост объема производства электроэнергии, электроэнергия становится все более дефицитной. У нас не хватает генерирующих мощностей, да и то, что есть, используется недостаточно эффективно: весь объем вырабатываемой энергии часто бывает сложно передать потребителю вследствие недостаточного развития электросетей.

Основной проблемой, доставшейся нам в наследство еще от СССР, является то, что половина электроэнергии в стране вырабатывается на газовых паротурбинных блоках, отличающихся малым КПД. КПД газовых паротурбинных блоков в полтора раза ниже, чем у парогазовых.

Страны Европейского Союза и США постепенно заменяют устаревшую паротурбинную технологию. Сегодня там на таких блоках генерируется менее 30% электроэнергии.

Эксперты Европейского банка реконструкции и развития в 2009 году провели исследование энергетического комплекса России и пришли к выводам о необходимости кардинальной реформы, включающей в себя полную замену оборудования на большинстве гидро- и теплоэнергостанций страны. По их подсчетам, общие затраты на модернизацию отрасли составят не менее 48 миллиардов евро.

Вместе с тем, в прошлом году нам удалось ввести в строй производственные мощности, генерирующие 6 ГВт электроэнергии, что стало рекордным показателем с 1985 года.

С другой стороны, российская промышленность продолжает оставаться чрезвычайно энергоемкой. Затраты энергии на производство ВВП превышают среднемировой показатель в 2,3 раза, а в отношении показателя государств Европы – в три раза.

Проблемой является и снижение научно-производственного потенциала в отрасли. Сегодня мы в состоянии производить генераторы и трансформаторы, не уступающие по эксплуатационным параметрам мировым аналогам. Но с точки зрения надежности и безопасности уже наблюдается некоторое отставание. Кроме того, модернизация имеющихся производств и внедрение новых технологий тормозится, в том числе, и отсутствием необходимого количества специалистов нужной квалификации.

Чего ожидать в будущем?

По прогнозам специалистов, в период с 2007 по 2015 год рост внутреннего спроса на электроэнергию составит, в среднем, 3,7-4,0% в год, а в период с 2016 по 2020 годы – 3,6-3,7%. Снижение роста объясняют модернизацией производства и внедрением менее энергоемких технологий. В связи с этим, энергетики каждый год должны вводить в строй мощности, генерирующие 130-200 млн. кВт.

Правительством РФ было принято решение о реализации нескольких программ, в рамках которых планируется снижение энергоемкости самых различных областей хозяйства:

- «Энергоэффективный квартал». В рамках программы планируется коренная модернизация систем энергоснабжения ряда мелких городов и отдельных микрорайонов. Впоследствии опыт будет распространен на системы всей страны;

- «Малая комплексная энергетика», в рамках которой планируется замена оборудования локальных генерирующих мощностей;

- «Инновационная энергетика», проект по внедрению новых технологий и решений.

Кроме того, значительное внимание уделяется атомной энергетике. Благодаря накопленному опыту у России есть все возможности сохранить конкурентоспособность на мировом рынке. Однако необходимо понимать, что 15 лет деградации не могли не сказаться на отрасли, так что сегодня ей необходимы значительные инвестиции.

Согласно государственным планам, в 2015 году рост генерирующих мощностей АЭС должен достигнуть 34-36 ГВт, а к 2020 году – 51-53 ГВт. Начиная со следующего десятилетия, запланирован постепенный переход к новой платформе, основанной на эксплуатации реакции быстрых нейтронов и замкнутом топливном цикле.

Как бы то ни было, для решения проблем в энергетическом комплексе необходим значительный рост инвестиций, повышение энергоэффективности промышленности, а также расширение производства электроэнергии за счет альтернативных источников.

К сожалению, не так давно мы допустили одну довольно серьезную ошибку: разделение и приватизацию РАО «ЕЭС России». Планировалось, что если допустить к отрасли частный капитал, это простимулирует его вкладывать средства в развитие и модернизацию. Но этого не произошло. Владельцы генерирующих мощностей и сбытовых компаний продолжают эксплуатировать устаревшее оборудование, не желая вкладываться в модернизацию. Здесь, как и во многих других отраслях, действует одно и то же правило: ориентация на «быструю» прибыль и нежелание думать о будущем. Вложения в энергетический комплекс со стороны государства по-прежнему составляют 85-90% от общего числа. Выходит, что средства вкладывает государство, а прибыль получает частник.

В связи со всем этим нетрудно сделать вывод, что сегодня власть должна озаботиться внесением изменений в законодательство, которые были бы направлены на:

Повышение контроля за деятельностью компаний отрасли;

Установление определенных показателей прибыли, которые владелец компании обязан направлять на обновление основных фондов и внедрение новых технологий, или, как вариант, экономическое стимулирование модернизации за счет налоговых льгот и других послаблений;

Возвращение чиновников-специалистов к управлению госкомпаниями энергетического сектора. Это позволит повысить управляемость и лучше контролировать ситуацию. Мера, конечно, во многом спорная, но если частные управляющие не будут работать подобающим образом, ничего другого просто не останется.

Современное развитие экономики остро выявило основные проблемы развития энергетического комплекса. Эра углеводородов медленно, но верно подходит к своему логическому завершению. Ей на смену должны прийти инновационные технологии, с которыми связываются основные перспективы энергетики .

Проблемы энергетического комплекса

Пожалуй, одной из важнейших проблем энергетического комплекса можно считать высокую стоимость энергии, приводящую, в свою очередь, к удорожанию себестоимости выпускаемой продукции. Несмотря на то, что в последние годы активно ведутся разработки, способные позволить использование , ни одна низ них на сегодняшний момент не способна полностью вытеснить углеводороды с мировой энергетической арены. Альтернативные технологии – дополнение к традиционным источникам, но не их замена, по крайней мере, сейчас.

В условиях России проблема усугубляется еще и состоянием упадка энергетического комплекса. Электрогенерирующие комплексы находятся не в самом лучшем состоянии, многие электростанции физически разрушаются. В результате стоимость электроэнергии не снижается, а постоянно возрастает.

Долгое время мировое энергетическое сообщество делало ставку на атом, но это направление развития также можно назвать тупиковым. В европейских странах наблюдается тенденция к постепенному отказу от АЭС. Несостоятельность энергии атома подчеркивается еще и тем, что за долгие десятилетия развития она так и не смогла вытеснить углеводороды.

Перспективы развития

Как уже отмечалось, перспективы развития энергетики , в первую очередь, связываются с разработкой эффективных альтернативных источников. Наиболее изученными направлениями в этой области являются:

  • Биотопливо.
  • Ветроэнергетика.
  • Геотермальная энергетика.
  • Гелиоэнергетика.
  • Термоядерная энергетика (УТС).
  • Водородная энергетика.
  • Приливная энергетика.

Ни одно из этих направлений не способно решить проблему энергетического кризиса, когда простого дополнения старых источников энергии альтернативными уже недостаточно. Разработки ведутся в разных направлениях и находятся на различных стадиях своего развития. Тем не менее, уже можно очертить круг технологий, которые способны положить начало :

  • Вихревые теплогенераторы. Такие установки используются достаточно давно, найдя свое применение в теплоснабжении домов. Прокачиваемая через систему трубопроводов рабочая жидкость нагревается до 90 градусов. Несмотря на все преимущества технологии, она еще далека от окончательного завершения разработок. Например, в последнее время активно изучается возможность использования в качестве рабочей среды не жидкости, а воздуха.
  • Холодный ядерный синтез. Еще одна технология, развивающаяся примерно с конца 80-х годов прошлого века. В ее основе лежит идея получения ядерной энергии без сверхвысоких температур. Пока направление находится на стадии лабораторных и практических исследований.
  • На стадии промышленных образцов находятся магнитомеханические усилители мощности, использующие в своей работе магнитное поле Земли. Под его воздействием увеличивается мощность генератора и увеличивается количество получаемой электроэнергии.
  • Очень перспективными представляются энергетические установки, в основе которых лежит идея динамической сверхпроводимости. Суть идеи проста – при определенной скорости возникает динамическая сверхпроводимость, позволяющая генерировать мощное магнитное поле. Исследования в этой области идут довольно давно, накоплен немалый теоретический и практический материал.

Это только крошечный перечень инновационных технологий, каждая из которых обладает достаточным потенциалом развития. В целом, мировое научное сообщество способно развивать не только альтернативные источники энергии, которые уже можно назвать старыми, но и по-настоящему инновационные технологии.

Нельзя не отметить, что в последние годы все чаще появляются технологии, которые еще недавно казались фантастическими. Развитие подобных источников энергии способно полностью преобразить привычный мир. Назовем только самые известные из них:

  • Нанопроводниковые аккумуляторы.
  • Технологии беспроводной передачи энергии.
  • Атмосферная электроэнергетика и т. д.

Следует ожидать, что в ближайшие годы появятся и другие технологии, разработка которых позволит отказаться от использования углеводородов и, что немаловажно, снизить себестоимость энергии.